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Fermi-Bose Systems, Macroscopic Quantum
Superposition States and Entanglement

Yorick Hardy1 and Willi-Hans Steeb1

We study the entanglement of states of a simple Fermi-Bose system. The Hilbert space is
C2 ⊗ l2(N). An explicit expression is given for the entanglement. We consider number
states, coherent states and macroscopic quantum superposition states in the product
system. Explicit formulas for the entanglement are also given in each of these cases.
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Entanglement has been studied in detail for finite-dimensional quantum systems
and to a lesser extent for infinite-dimensional quantum systems (see (Steeb and
Hardy, 2001, 2004) and references therein). Chi and Lee (2003) have described
a class of two parameter density operators in a product space of two dimensional
by n dimensional Hilbert space for which they could obtain a lower bound and
tight upper bound on the entanglement of formation. Wang and Sanders (2001)
discussed the generation of multipartite entangled coherent states and provide
further references on entangled coherent states. Keyl et al. (2003) discussed the
entanglement of infinite dimensional systems and quantum states exhibiting infi-
nite entanglement. In (Hardy and Steeb, 2004) we described entanglement for the
Hubbard model, and discussed entanglement and phonon coupling. Hines et al.
(2003) considered the entanglement of two-mode Bose–Einstein condensates in
the Bose–Hubbard model and macroscopic quantum superposition (Schrödinger
cat like) states.

In this letter we consider entanglement of a Fermi system with a Bose system
in terms of coherent states and macroscopic quantum superposition states. Entan-
glement between Fermi and Bose systems has not been considered before. First we
give an explicit expression for the entanglement of states in a one-Fermi system
coupled to an arbitrary quantum system. Then we proceed to elaborate on this
expression for specific cases in a one-Bose system, providing explicit formulas
for the entanglement for these special cases. The Hilbert space for the one-Fermi
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system is C2. For the one-Bose system we have the Hilbert space l2(N). Thus, we
work in the product Hilbert space C2 ⊗ l2(N).

Consider the product Hilbert space C2 ⊗ H where H denotes an arbitrary
Hilbert space. For the one-Bose system we would set H = l2(N). An arbitrary
pure state in this product Hilbert space can be written as

|ψ〉 := |0〉 ⊗ |φ0〉 + |1〉 ⊗ |φ1〉
where |φ0〉 , |φ1〉 ∈ H and {|0〉 , |1〉} forms an orthonormal basis in C2. The con-
dition for the state |ψ〉 to be normalized, i.e., 〈ψ |ψ 〉 = 1, leads to the constraint

〈φ0|φ0〉 + 〈φ1|φ1〉 = 1. (1)

If we assume that |φ0〉 and |φ1〉 have identical norms, then |ψ〉 takes the form

|ψ〉 = 1√
2

(|0〉 ⊗ |ϕ0〉 + |1〉 ⊗ |ϕ1〉)

where |φ0〉 = 1√
2
|ϕ0〉, |φ1〉 = 1√

2
|ϕ1〉 and |ϕ0〉, |ϕ1〉 are normalized. Defining the

reduced density matrices (using the partial trace)

ρ1 := trC2 (|ψ〉〈ψ |), ρ2 := trH(|ψ〉〈ψ |)
the entanglement of |ψ〉 is given by (Steeb and Hardy, 2001, 2004) as

E(|ψ〉) := −tr(ρ1 log2 ρ1) = −tr(ρ2 log2 ρ2).

Straightforward calculation yields

ρ1 = |φ0〉〈φ0| + |φ1〉〈φ1|
and

ρ2 = 〈φ0|φ0〉|0〉〈0| + 〈φ1|φ0〉|0〉〈1| + 〈φ0|φ1〉|1〉〈0| + 〈φ1|φ1〉|1〉〈1|.
Applying the constraint (1) we find that the non-zero eigenvalues of ρ1 and ρ2 are
given by

λ(〈φ0|φ0〉, |〈φ0|φ1〉|2) := 1

2
(1 +

√
(1 − 2〈φ0|φ0〉)2 + 4|〈φ0|φ1〉|2)

and 1 − λ. Thus,

E(|ψ〉) = −λ log2 λ − (1 − λ) log2(1 − λ).

The entanglement is described exclusively by 〈φ0|φ0〉 and |〈φ0|φ1〉|2. Furthermore,
we have the inequality

|〈φ0|φ1〉|2 ≤ 〈φ0|φ0〉 − 〈φ0|φ0〉2 ≤ 1

4
. (2)
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Fig. 1. Entanglement as a function of 〈φ0|φ0〉 and |〈φ0|φ1〉|2.

Figure 1 shows the entanglement E as a function of 〈φ0|φ0〉 and |〈φ0|φ1〉|2. The
maximum value of E is achieved for 〈φ0|φ1〉 = 0 and 〈φ0|φ0〉 = 1

2 .
Let {|n〉 : n = 0, 1, 2, . . .} be the number states (Fock states) (Steeb and

Hardy, 2004). The scalar product between the number states |n〉 and |m〉 is given by
〈n|m〉 = δnm . For the number states we use |φ0〉 = c0|m〉 and |φ1〉 = c1|n〉 where
c0, c1 ∈ C. In other words

|ψ〉 = c0|0〉 ⊗ |m〉 + c1|1〉 ⊗ |n〉.
The condition (1) leads to |c0|2 + |c1|2 = 1. Since the scalar products are given by
〈φ0|φ0〉 = |c0|2 and |〈φ0|φ1〉|2 = |c0|2(1 − |c0|2)δmn , we have

E(|ψ〉) = −|c0|2 log2 |c0|2(1 − |c0|2) log2(1 − |c0|2).

For |c0|2 = |c1|2 = 1
2 we obtain maximum entanglement. This is analogous to the

entanglement in C2 ⊗ C2 since the Hilbert space spanned by {|m〉, |n〉}, for fixed
m and n, is isomorphic to C2.

The coherent states (Steeb and Hardy, 2004) are defined by b|β〉 = β|β〉
where b is the Bose annihilation operator and β ∈ C. The scalar product be-
tween the coherent states |α〉 and |β〉 is given by 〈α|β〉 = e− 1

2 (|α|2+|β|2)+ᾱβ . Thus,
|〈α|β〉|2 = e−|α−β|2 . For the coherent states we use |φ0〉 = c0|α〉 and |φ1〉 = c1|β〉
where c0, c1 ∈ C. Thus,

|ψ〉 = c0|0〉 ⊗ |α〉 + c1|1〉 ⊗ |β〉.
The condition (1) leads to |c0|2 + |c1|2 = 1. We find that 〈φ0|φ0〉 = |c0|2 and
|〈φ0|φ1〉|2 = |c0|2(1 − |c0|)2e−|α−β|2 . The behavior with respect to the coherent
states tends to the behavior of the number states as |α − β| → ∞. The maximal
entanglement is reached asymptotically as |α − β| → ∞ when |c0|2 = 1

2 . Figure 2
shows entanglement E as a function of |c0|2 and |α − β|.

For macroscopic quantum superposition states (defined in Itano et al. (1997)
as Schrödinger cat states) we use |φ0〉 = c0|β〉 and |φ1〉 = c1| − β〉 where c0, c1 ∈
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Fig. 2. Entanglement as a function of |c0|2 and |α − β| for coherent states.

C and |β〉 and | −β〉 are coherent states. This means that we consider a special
case of the coherent states discussed above with α ← β and β ← −β.

Consider next the superposition for macroscopic quantum superposition
states, |φ0〉 = c0(|α〉 + | −α〉) and |φ1〉 = c1(|β〉 + | −β〉) where c0, c1 ∈ C, i.e.,

|ψ〉 = c0|0〉 ⊗ (|α〉 + | −α〉) + c1|1〉 ⊗ (|β〉 + | −β〉).
The condition (1) for this case gives

2|c0|2(1 + e−2|α|2 ) + 2|c1|2(1 + e−2|β|2 ) = 1. (3)

Consequently 〈φ0|φ0〉 = 2|c0|2(1 + e−2|α|2 ), and using (3)

|〈φ0|φ1〉|2 = 〈φ0|φ0〉(1 − 〈φ0|φ0〉) (e− 1
2 |α−β|2 + e− 1

2 |α+β|2 )2

(1 + e−2|α|2 )(1 + e−2|β|2 )
.

It is convenient to define the quantities

p00 := 〈φ0|φ0〉 = 2|c0|2(1 + e−2|α|2 )

p01 :=
(
e− 1

2 |α−β|2 + e− 1
2 |α+β|2)2

(
1 + e−2|α|2)(1 + e−2|β|2) .

Thus, we obtain |〈φ0|φ1〉|2 = p00(1 − p00)p01. From Fig. 1 we see that the max-
imum entanglement occurs when 〈φ0|φ1〉 = 0 and 〈φ0|φ0〉 = 1

2 . Since the above
equation implies 〈φ0|φ1〉 �= 0 for 〈φ0|φ0〉 = 1

2 , the maximum entanglement is ap-
proached asymptotically for α = 0, |β| → ∞ or β = 0, |α| → ∞. This is due
to the fact that |α − β|2 = |α|2 + |β|2 − 2�(αβ̄) and |α + β|2 = |α|2 + |β|2 +
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Fig. 3. p01 in terms of α and β.

2�(αβ̄). In other words, for α, β �= 0 one term shrinking in the numerator of p01

implies that the other is growing.
To find the entanglement we first determine the eigenvalues of ρ1 and ρ2

which are now given by

λ = 1

2
(1 +

√
1 − 4(1 − p01)p00(1 − p00)).

Figure 3 shows the values for p01 on the domain

{(α, β) ∈ C × C : �(α) = 0, �(β) = 0}

Fig. 4. Entanglement as a function of p00 and p01 for macroscopic quantum superposition states.
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Fig. 5. p01 in terms of α and n.

and Fig. 4 shows the entanglement. It is interesting to note that for these macro-
scopic quantum superposition states the inequality (2) results exclusively from
p01.
As a final example we consider the case when |φ0〉 is described by a number state
and |φ1〉 is described by a coherent state, i.e,

|ψ〉 = c0|0〉 ⊗ |n〉 + c1|1〉 ⊗ |α〉.
The scalar product between a number state |n〉 and a coherent state |α〉 is given by
〈n|α〉 = e− 1

2 |α|2 αn√
n!

. The condition (1) for this case gives

|c0|2 + |c1|2 = 1.

Consequently 〈φ0|φ0〉 = |c0|2, and

|〈φ0|φ1〉|2 = |c0|2(1 − |c0|2)e−|α|2 |α|2n

n!
.

It is again convenient to define the quantities p00 and p01 as

p00 := 〈φ0|φ0〉 = |c0|2, p01 := e−|α|2 |α|2n

n!
.

Thus, we obtain |〈φ0|φ1〉|2 = p00(1 − p00)p01. The entanglement can again be
determined from p00 and p01 and proceeds as described above for macroscopic
quantum superposition states. Figure 5 describes p01 on the domain {(α, n) ∈
C × R : �(α) = 0}, although we only consider integer n.
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